# **Design for the mid-Holocene run**

You will find on this page information about the experiment design for the PMIP4 mid-Holocene experiment.

Please make sure to read the Associated publication before setting up your experiments or using the output data, and read any *how-to* sections associated with specific boundary conditions.

Get in touch with the following people if you have questions:

Pascale BraconnotScientific questionsJean-Yves PeterschmittTechnical questions or missing data

### Associated publication

**The PMIP4 contribution to CMIP6 - Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations**, Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q., Geosci. Model Dev., 10, 3979-4003, doi:10.5194/gmd-10-3979-2017, 2017.

Supplement (Otto-Bliesner et al, GMD, 2017)

### **Specifications**

|                                                      | PMIP4-CMIP6 specifications                                                                                                                 |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| PMIP4-CMIP6 name                                     | midHolocene                                                                                                                                |
| Astronomical parameters                              | eccentricity = 0.018682<br>obliquity = 24.105°<br>perihelion-180° = 0.87°<br>Date of vernal equinox : March 21 at noon                     |
| Trace gases                                          | $CO_2 = 264.4 \text{ ppm}$<br>$CH_4 = 597 \text{ ppb}$<br>$N_2O = 262 \text{ ppb}$<br>CFC = 0<br>$O_3 = \text{same as in CMIP6 piControl}$ |
| Solar activity                                       | Same as in CMIP6 piControl (TSI = 1360.747 W.m-2)                                                                                          |
| Ice sheets                                           | Same as in CMIP6 piControl                                                                                                                 |
| Topography and coastlines Same as in CMIP6 piControl |                                                                                                                                            |
| Volcanic activity                                    | Same as in CMIP6 piControl                                                                                                                 |



|            | PMIP4-CMIP6 specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aerosols   | Modified sources, atmospheric concentrations or radiative forcing,<br>depending on model complexity and model configuration used for DECK<br>and historical experiments<br>cf. documenting papers: Otto-Bliesner et al, in prep and Kageyama et al,<br>subm.<br>Access to data                                                                                                                                                                                                    |
| Vegetation | Depending on model complexity and model configuration used for DECK<br>and historical experiments:<br>Interactive vegetation <b>or</b> Interactive carbon cycle (LAI) <b>or</b> Prescribed to<br>present-day values or mid-Holocene values computed from off-line<br>vegetation model<br>The methodology to represent vegetation should be the same as for the<br>CMIP6 piControl simulation<br>cf. documenting papers: Otto-Bliesner et al, in prep and Kageyama et al,<br>subm. |

## Collaboration

• The PMIP4-CMIP6 **midHolocene** and **lig127k** simulations are also expected to be relevant to analyses in SIMIP's assessment of the role of sea-ice changes in climate changes and AerChemMIP's assessment of the role of dust

# Sensitivity experiments

#### **Sensitivity to Prescribed Vegetation**

#### **Sensitivity to Prescribed Ice Sheets**

From: https://pmip4.lsce.ipsl.fr/ - **PMIP4** 

Permanent link: https://pmip4.lsce.ipsl.fr/doku.php/exp\_design:mh



Last update: 2020/04/07 14:38