pubs:chaptersar6

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
pubs:chaptersar6 [2018/12/20 18:09]
jypeter
pubs:chaptersar6 [2019/08/28 09:03]
jypeter Updated the list
Line 1: Line 1:
 ====== PMIP publications for AR6 ====== ====== PMIP publications for AR6 ======
  
-===== Chapter 1 =====+Document generated on **Wed Aug 28 11:00:41 2019**
  
-  Otto-Bliesner, B.L. et al., 2017The PMIP4 contribution to CMIP6 - Part 2: Two interglacialsScientific objectives and experimental design of the PMIP4-CMIP6 Holocene and Last Interglacial simulations. Geoscientific Model Development, 10, 3979-4003, https://doi.org/10.5194/gmd-10-3979-2017 +Number of submitted references: **177** 
-    This paper describes the protocols for the mid-Holocene (6 kaand Last Interglacial (127 ka) Tier simulationsas well as numerous Tier 2 simulations to assess the sensitivities to prescribed vegetationice sheets, freshwater fluxes, and alternative states of orbital forcing. For the first time, the LIG is included for CMIP6 and PMIP4, allowing a multi-model assessment of this important period for testing our knowledge of climate-ice sheet interactions in warm climates.+ 
 +Notes: 
 +  * References are not sorted, and listed in the order they were submitted to the //PMIP publications for the AR6-WG1 questionnaire// 
 +  There may be some duplicates (same ref submitted by different people) 
 + 
 +===== Chapter 1: Framingcontextmethods ===== 
 + 
 +Number of selected references: **11**
  
   * Shi, H., B. Wang, E. R. Cook, J. Liu, and F. Liu, 2018: Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records. J. Clim., 31, 7845-7861, https://doi.org/10.1175/JCLI-D-18-0003.1   * Shi, H., B. Wang, E. R. Cook, J. Liu, and F. Liu, 2018: Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records. J. Clim., 31, 7845-7861, https://doi.org/10.1175/JCLI-D-18-0003.1
Line 40: Line 47:
  
  
-===== Chapter 2 =====+===== Chapter 2: Changing state of the climate system ===== 
 + 
 +Number of selected references: **87**
  
   * PAGES2k-PMIP3 group: Bothe O, M. Evans, L. Fernández Donado, E. Garcia Bustamante, J. Gergis, F. J. Gonzalez-Rouco, H. Goosse , G. Hegerl, A. Hind, J. Jungclaus, D. Kaufman, F. Lehner, N. McKay, A. Moberg, C. C. Raible, A. Schurer, F. Shi, J. Smerdon, L. von Gunten, S. Wagner, E. Warren, M. Widmann, P. Yiou, E. Zorita, 2015. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Climate of the Past, 11, 1673-1699, 2015 www.clim-past.net/11/1673/2015/ , https://doi.org/10.5194/cp-11-1673-2015   * PAGES2k-PMIP3 group: Bothe O, M. Evans, L. Fernández Donado, E. Garcia Bustamante, J. Gergis, F. J. Gonzalez-Rouco, H. Goosse , G. Hegerl, A. Hind, J. Jungclaus, D. Kaufman, F. Lehner, N. McKay, A. Moberg, C. C. Raible, A. Schurer, F. Shi, J. Smerdon, L. von Gunten, S. Wagner, E. Warren, M. Widmann, P. Yiou, E. Zorita, 2015. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Climate of the Past, 11, 1673-1699, 2015 www.clim-past.net/11/1673/2015/ , https://doi.org/10.5194/cp-11-1673-2015
Line 195: Line 204:
     * Major modes of Asian summer monsoon rainfall variability and predictability are discussed in this paper.     * Major modes of Asian summer monsoon rainfall variability and predictability are discussed in this paper.
  
-  * Saint-Lu, M., et al. (2015). "Changes in the ENSO/SPCZ relationship from past to future climates." Earth and Planetary Science Letters 412: 18-24., n/a+  * Saint-Lu, M., et al. (2015). "Changes in the ENSO/SPCZ relationship from past to future climates." Earth and Planetary Science Letters 412: 18-24., http://doi.org/10.1016/j.epsl.2014.12.033
     * This study considers a set of paleoclimate and future climate simulations. It shows that changes in the background tropical state largely control the mean SPCZ location. In contrast, changes in the background tropical state do not directly control the interannual variability of the SPCZ location. The relationship between ENSO and the SPCZ location varies from one climate to another. We thus demonstrate that the teleconnection mechanisms inferred from the modern climate cannot be directly extrapolated to other climates. This study therefore calls for a cautious interpretation of climate reconstructions from environmental indicators in the Southwest Pacific with regard to ENSO variations.     * This study considers a set of paleoclimate and future climate simulations. It shows that changes in the background tropical state largely control the mean SPCZ location. In contrast, changes in the background tropical state do not directly control the interannual variability of the SPCZ location. The relationship between ENSO and the SPCZ location varies from one climate to another. We thus demonstrate that the teleconnection mechanisms inferred from the modern climate cannot be directly extrapolated to other climates. This study therefore calls for a cautious interpretation of climate reconstructions from environmental indicators in the Southwest Pacific with regard to ENSO variations.
  
-  * Blanchet, C. L., Contoux, C., Leduc, G.: Runoff and precipitation dynamics in the Blue and White Nile catchments during the mid-Holocene: a data-model comparison, Quaternary Science Reviews, 130, 222-230, doi: 10.1016/j.quascirev.2015.07.014, 2015., 10.1016/j.quascirev.2015.07.014+  * Blanchet, C. L., Contoux, C., Leduc, G.: Runoff and precipitation dynamics in the Blue and White Nile catchments during the mid-Holocene: a data-model comparison, Quaternary Science Reviews, 130, 222-230, doi: 10.1016/j.quascirev.2015.07.014, 2015., http://doi.org/10.1016/j.quascirev.2015.07.014
     * This paper describes the changes in contribution between the White Nile and the Blue Nile river catchments during the mid-Holocene. By comparing regional proxy-records with the output from a global atmospheric model zoomed on Africa, we propose that the reduced contribution from the Blue Nile at 6 ka originated from both a higher White Nile runoff and a lower Blue Nile runoff.     * This paper describes the changes in contribution between the White Nile and the Blue Nile river catchments during the mid-Holocene. By comparing regional proxy-records with the output from a global atmospheric model zoomed on Africa, we propose that the reduced contribution from the Blue Nile at 6 ka originated from both a higher White Nile runoff and a lower Blue Nile runoff.
  
Line 240: Line 249:
     * This study reveals that there was a strong connection between changes in North Atlantic circulation during Heinrich Stadials and injections of freshwater from the North American Cordilleran Ice Sheet to the north-eastern North Pacific. The results show that nonlinear ocean- atmosphere background interactions played a complex role in the dynamics linking the freshwater discharge responses of the North Atlantic and North Pacific during glacial periods.     * This study reveals that there was a strong connection between changes in North Atlantic circulation during Heinrich Stadials and injections of freshwater from the North American Cordilleran Ice Sheet to the north-eastern North Pacific. The results show that nonlinear ocean- atmosphere background interactions played a complex role in the dynamics linking the freshwater discharge responses of the North Atlantic and North Pacific during glacial periods.
  
 +  * Bartlein, P.J., and S.L. Shafer, 2018, Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis. Geoscientific Model Development Discussions, 1-36., https://doi.org/10.5194/gmd-2018-283 
 +    * Implements an approach for adjusting for the paleo calendar effect, which is significant for the midHoloceneand lig127 PMIP experiments.
  
-===== Chapter 3 =====+  * Biasutti, M., Voigt, A., Bader, J., Boos, W.R., Braconnot, P., Hargreaves, J.C., Harrison, S.P., Kang, S., Mapes, B., Scheff, J., Schumacher, C., Sobel, A.H., Schmidt, G., Xie, S-P. 2018. Global energetics and local physics as drivers of past, present and future monsoons. Nature Geosciences 11: 392-400. doi:10.1038/s41561-018-0137-1, doi:10.1038/s41561-018-0137-1 
 +    * provides a new theoretical framework for understanding changes in the monsoons 
 + 
 +  * Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S.P., Baker, A., Boyd, M., Kaushal, N., Masood Ahmed, S., Arienzo, M., Brahim, Y.A., Bajo, P., Braun, K., Burstyn, Y., Chawchai, S., Duan, W., Hatvani, I.G., Hu, J., Kern, Z., Labuhn, I., Lachniet, M., Lechleiter, F.A., Lorrey, A., Pérez-Mejías, C., Pickering, R., Scroxton, N. and SISAL Working Group Members, 2018. The SISAL database: a global resource to document water and carbon isotope records from speleothems. Earth System Science Data 10:1687-1713. , https://doi.org/10.5194/essd-10-1687-2018 
 +    * Documents a new data set of oxygen isotope data from speleothems that will can be used for benchmarking isotope-enabled palaeoclimate simulations 
 + 
 +  * Prentice, I.C., Cleator, S.F., Huang, Y.F., Harrison, S.P., Roulstone, I., 2017.  Reconstructing ice -age climates: quantifying low-CO2 effects on plants. Global and Planetary Change 149: 166-176.,  http://dx.doi.org/10.1016/j.gloplacha.2016.12.012 
 +    * Provides a way of taking account of the ecophysicological impacts of low CO2 during glacial periods in making climate reconstructions of moisture variables from fossil pollen. The water-use efficiency of plants in reduced under low CO2 and this results in vegetation appearing to reflect more arid conditions that in fact prevailed. The paper provides a correction which can be applied to existing pollen-based reconstructions of moisture to take account of this. 
 + 
 +  * Sánchez Goñi, M.F., Desprat, S., Daniau, A.-L., Bassinot, F., Polanco-Martínez, J.M., Harrison, S.P., Allen, J.R.P., Anderson, R.S., Behling, H., Bonnefille, R., Burjachs, F., Carrión, J.S., Cheddadi, R., Clark, J.S., Combourieu-Nebout, N., Courtney-Mustaphi, C., Debusk, G.H., Dupont, L.M., Finch, J., Fletcher, W.J., Giardini, M., González, C., Gosling, W.D., Grigg, L.D., Grimm, E.C., Hayashi, R., Helmens, K., Heusser, L.E., Hill, T., Hope, G., Huntley, B., Igarashi, Y., Irino, T., Jacobs, B.F., Jiménez-Moreno, G., Kawai, S., Kershaw, P., Kumon, F., Lawson, I., Ledru, M.-P., Lézine, A.-M., Liew, P.-M., Magri, D., Marchant, R., Margari, V., Mayle, F., McKenzie, M., Moss, P., Müller, S., Müller, U.C., Naughton, F., Newnham, R.M., Oba, T., Pérez-Obiol, R., Pini, R., Ravazzi, C., Roucoux, K.H., Rucina, S., Scott, L., Takahara, H., Tzedakis, P.C., Urrego, D.H., Van Geel, B., Valencia, B.G., Vandergoes, M.J., Vincens , A., Whitlock, C.L., Willard, D. A., Yamamoto, M., 2017 The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes of the last glacial period.  Earth System Science Data 9: 679-695., https://doi.org/10.5194/essd-9-679-2017 
 +    * Documents a global database of pollen and charcoal data which provides information on the response of vegetation and vegetation disturbance by fire to Dansgaard-Oeschger variability during the last glacial period. 
 + 
 +  * Izumi, K. and P.J. Bartlein, 2016, North American paleoclimate reconstructions for the last glacial maximum using an inverse-modeling through iterative-forward-modeling (IMIFM) approach applied to pollen data. Geophysical Research Letters. 43:1-8, http://dx.doi.org/10.1002/2016GL070152  
 +    * Describes a method for interative forward-modeling reconstructions of paleoclimates 
 + 
 +  * Harrison, S.P., P.J. Bartlein & I.C. Prentice, 2016, What have we learnt from palaeoclimate simulations? Journal of Quaternary Science31:363-385, https://doi.org/10.1002/jqs.2842  
 +    * Overview of results from comparisons of climate-model simulations and paleoclimatic data syntheses 
 + 
 +  * Izumi, K., Bartlein, P.J., Harrison, S.P., 2015. Energy-balance mechanisms underlying consistent large-scale temperature responses in warm and cold climates. Climate Dynamics. 44:3111-3127., https://doi.org/10.1007/s00382-014-2189-2 
 +    * Explains the energy-balance sources of the large-scale temperature responses in warm and cold climates 
 + 
 +  * Emile-Geay, J., Cobb, K.M., Carré, M., Braconnot, P., Leloup, J., Zhou, Y., Harrison, S.P., Corrège, T., Collins, M., Driscoll, R., Elliot, M., McGregor, H.V., Schneider, B., Tudhope, A., 2015. Linkages between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nature Geoscience 9: 168-173. doi:10.1038/ngeo2608, doi:10.1038/ngeo2608 
 +    * Shows that ENSO variance was reduced throughout most of the Holocene and that this quiescence is not obvioulsy related to orbital forcing. Climate models are unable to reproduce these observations. 
 + 
 +  * Harrison, S.P., Bartlein, P.J., Brewer, S., Prentice, I.C., Boyd, M., Hessler, I., Holmgren, K., Izumi, K., Willis, K., 2014. Climate model benchmarking with glacial and mid-Holocene climates. Climate Dynamics 43, 671-688., https://doi.org/10.1007/s00382-013-1922-6 
 +    * Systematic benchmarking of the PMIP3 models 
 + 
 +  * Hessler, I., Harrison, S.P., Kuchera, M., Waelbroeck, C., Chen, M-T., Anderson, C., de Vernal, A., Fréchette, B., Cloke-Hayes, A. and Londeix, L., 2014. Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions. Climate of the Past 10: 2237-2252., https://doi.org/10.5194/cp-10-2237-2014 
 +    * Systematically assess the methodological issues thatcontribute to the uncertainties associated with sea-surface temperature reconstructions during the mid-Holocene. Indicates that the MH is not a good time period to evaluate oceanic conditions. 
 + 
 +  * Perez-Sanz, A., Li, G., Gonzalez, P., Harrison, S.P., 2014. Evaluation of seasonal climates of northern Africa and the Mediterranean in the CMIP5 simulations.  Climate of the Past 10: 551-568. doi:10.5194/cp-10-551-2014, doi:10.5194/cp-10-551-2014 
 +    * Provides an evaluation of the ability of the CMIP5 simulations to simukate enhanced monsoons during the mid-Holocene. 
 + 
 +  * Izumi, K., P.J. Bartlein and S.P. Harrison, 2013, Consistent large-scale temperature responses in warm and cold climates, Geophysical Research Letters, https://dow.org/10.1002/grl.50350  
 +    * Demonstrates that there are consistent large-scale temperature responses in warm and cold climates using paleo simulations and reconstructions along with future simulations 
 + 
 +  * Albani S., Balkanski Y., Mahowald N., Winckler G., Maggi V., Delmonte B.: Aerosol-climate interactions during the Last Glacial Maximum. Curr. Clim. Change Rep., 4, 99-114, doi:10.1007/s40641-018-0100-7, 2018., 10.1007/s40641-018-0100-7 
 +    * Recent invited review on aerosol-climate interaction during the LGM 
 + 
 +  * Lambert, F., J.-S. Kug, R. J. Park, N. Mahowald, G. Winckler, A. Abe-Ouchi, R. O'ishi, T. Takemura, and J.-H. Lee (2013), The role of mineral-dust aerosols in polar temperature amplification, Nat. Clim. Chang., 3(5), 487-491, doi:10.1038/nclimate1785, 10.1038/nclimate1785 
 +    * Shows the polar amplification and potential radiative forcing effect of mineral dust aerosols.  
 + 
 +  * Sánchez-Goñi, M.F., Bard, E., Landais, A., Rossignol, L., d'Errico, F. (2013). Air-sea temperature decoupling in Western Europe during the last interglacial/glacial transition. Nature Geoscience 6 , 837-841, DOI : 10.1038/ngeo1924 
 +    * In contrast with periods of relatively stable global ice volume (e.g. present-day interglacial), periods of ice-sheet growth are marked by a decoupling between eastern North Atlantic warming and European cooling. This configuration allows a northward shift of the westerlies bringing humidity to the high northern latitudes. 
 + 
 +  * Zorzi, C., Sánchez Goñi, M.F., Anupama, K., Prasad, S., Hanquiez, V., Johnson, J., Giosan, L. (2015) Indian monsoon variations during three contrasting climatic periods: the Holocene, HeinrichStadial 2 and the last interglacial-glacial transition. Quaternary Science Reviews 125, 50-60., doi.org/10.1016/j.quascirev.2015.06.009 
 +    * Insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic (e.g. amount of sea-ice or iceberg discharges), Eurasia or the Indian Ocean. 
 + 
 +  * Sánchez Goñi, M.F., Rodrigues, T., Hodell, D.A., Polanco-Martinez, J.M., Alonso-Garcia, M., Hernandez-Almeida, I., Desprat, S., Ferretti, P. (2016) Tropically-driven climate shifts in southwestern Europe during MIS 19, a low excentricity interglacial. Earth and Planetary Science Letters 448, 81-93., http://dx.doi.org/10.1016/j.epsl.2016.05.018 
 +    * MIS 19, the best orbital analogue to our present interglacial, is marked by low latitude-driven 5000-yr cycles of drying and cooling in the western Mediterranean region, along with warmth in the subtropical gyre related to the fourth harmonic of precession. The discrepancy between the dominant cyclicity observed during MIS1, 2500-yr, and that of MIS19, 5000-yr, challenges the similar duration of the Holocene and MIS19c interglacials under natural boundary conditions. 
 + 
 +  * Oliveira, D., Desprat, S., Yin, Q., Naughton, F., Trigo, R., Rodrigues, T., Abrantes, F., Sánchez Goñi, M.F. (2018). Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe. Climate Dynamics 51, 667-686, doi:10.1007/s00382-017-3948-7 
 +    * Data-model comparison reveals that the SW Iberian forest dynamics over the best orbital analogues to our present interglacial are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. 
 + 
 +  * Sánchez Goñi, M.F., Ferretti, P., Polanco-Martinez, J.M., Rodrigues, T., Alonso-Garcia, M., Rodriguez-Tovar, F.J.,  Dorador, J., Desprat, S. (2019). Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles. Earth and Planetary Science Letters 511, 117-129., https://doi.org/10.1016/j.epsl.2019.01.032. 
 +    * During MIS 17 (700 ka), a cold interglacial characterized by the lowest atmospheric CO2 concentrations of the last 800,000 years, the Iberian Peninsula was paradoxically marked by the maximum in the Mediterranean forest expansion indicating strong winter precipitation and summer warmth. These data indicate a decoupling between global and regional climates. This work also highlights the important contribution of the westerlies leading to the strong 100-kyr ice age cycles. These atmospheric changes remain, however, a key area of uncertainty in past and future climate model simulations. 
 + 
 +  * Sánchez Goñi, M.F., Desprat, S., Daniau, A.-L., Bassinot, F., Polanco-Martinez, J.M., Harrison, S.P. and ACER contributors (2017). The ACER pollen and charcoal database : a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 9, 679-695., https://doi.org/10.5194/essd-9-679-2017 
 +    * This global vegetation and fire data compilation shows the regional response to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. 
 + 
 + 
 +===== Chapter 3: Human influence on the climate system ===== 
 + 
 +Number of selected references: **13**
  
   * Kadow, C, S. Illing, O. Kunst, H. W. Rust, H. Pohlmann, W. A. Müller and U. Cubasch, 2015: Evaluation of forecasts by accuracy and spread in the MIKLIP decadal prediction system. Met. Z, DOI 10.1127/metz/2015/0639   * Kadow, C, S. Illing, O. Kunst, H. W. Rust, H. Pohlmann, W. A. Müller and U. Cubasch, 2015: Evaluation of forecasts by accuracy and spread in the MIKLIP decadal prediction system. Met. Z, DOI 10.1127/metz/2015/0639
Line 279: Line 353:
     * We review the principal proxy data available for hydroclimatic reconstructionsover the Common Era (CE) and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE.     * We review the principal proxy data available for hydroclimatic reconstructionsover the Common Era (CE) and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE.
  
 +  * Gallego-Sala, A., Charman, D., Harrison, S.P., Li, G. and Prentice, I.C., 2016. Climate-driven expansion of blanket bogs in Britain during the Holocene.  Climate of the Past 12: 129-136., https://doi.org/10.5194/cp-12-129-2016
 +    * Shows that the Late Holocene expansion of peat bogs across Britain, often attributed to human activities, can in fact be explained by climate changes.
 +
 +
 +===== Chapter 4: Future global climate: scenario-based projections and near-term information =====
  
-===== Chapter 4 =====+Number of selected references: **25**
  
   * Brierley, C., & Wainer, I. (2018). Inter-annual variability in the tropical Atlantic from the Last Glacial Maximum into future climate projections simulated by CMIP5/PMIP3. Climate of the Past, 14(10), 1377-1390., https://doi.org/10.5194/cp-14-1377-2018   * Brierley, C., & Wainer, I. (2018). Inter-annual variability in the tropical Atlantic from the Last Glacial Maximum into future climate projections simulated by CMIP5/PMIP3. Climate of the Past, 14(10), 1377-1390., https://doi.org/10.5194/cp-14-1377-2018
Line 348: Line 427:
     * Here we use post AD 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.     * Here we use post AD 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.
  
 +  * Prado, L. F., Wainer, I., Chiessi, C. M. (2013). Mid-Holocene PMIP3/CMIP5 model results: Intercomparison for the South American Monsoon System. The Holocene, Vol 23, Issue 12, 1915-1920., 10.1177/0959683613505336
 +    * This paper contains an unpdated proxy compilation for South American Monsoon System during the Mid-Holocene, and also a data-model comparison using the PMIP3 models.
  
-===== Chapter 5 =====+  * Chandan and Peltier 2018: On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures. Climate of the past, 14, 825-856, https://doi.org/10.5194/cp-14-825-2018 
 +    * This paper derives a hierarchy of climate sensitivities, applicable on various timescales, from modelling studies of the future-like warm period of the mid-Pliocene. 
 + 
 +  * Sánchez Goñi, M.F., Ferretti, P., Polanco-Martinez, J.M., Rodrigues, T., Alonso-Garcia, M., Rodriguez-Tovar, F.J.,  Dorador, J., Desprat, S. (2019). Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles. Earth and Planetary Science Letters 511, 117-129., https://doi.org/10.1016/j.epsl.2019.01.032. 
 +    * During MIS 17 (700 ka), a cold interglacial characterized by the lowest atmospheric CO2 concentrations of the last 800,000 years, the Iberian Peninsula was paradoxically marked by the maximum in the Mediterranean forest expansion indicating strong winter precipitation and summer warmth. These data indicate a decoupling between global and regional climates. This work also highlights the important contribution of the westerlies leading to the strong 100-kyr ice age cycles. These atmospheric changes remain, however, a key area of uncertainty in past and future climate model simulations. 
 + 
 + 
 +===== Chapter 5: Global carbon and other biogeochemical cycles and feedbacks ===== 
 + 
 +Number of selected references: **9**
  
   * Lambert, F., A. Tagliabue, G. Shaffer, F. Lamy, G. Winckler, L. Farias, L. Gallardo, and R. De Pol-Holz (2015), Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates, Geophys. Res. Lett., 42(14), 6014-6023, 10.1002/2015GL064250   * Lambert, F., A. Tagliabue, G. Shaffer, F. Lamy, G. Winckler, L. Farias, L. Gallardo, and R. De Pol-Holz (2015), Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates, Geophys. Res. Lett., 42(14), 6014-6023, 10.1002/2015GL064250
Line 360: Line 450:
     * This paper assess  response of atmospheric circulations to LGM ice sheet forcing to understand controls on biogeochemistry of the North Pacific Ocean during last deglaciation. The paper suggests massive CO2 outgassing from the North Pacific during the last deglaciation was aided by a large increase in Ekman suction within the North Pacific with the presence of an ice sheet over North America.      * This paper assess  response of atmospheric circulations to LGM ice sheet forcing to understand controls on biogeochemistry of the North Pacific Ocean during last deglaciation. The paper suggests massive CO2 outgassing from the North Pacific during the last deglaciation was aided by a large increase in Ekman suction within the North Pacific with the presence of an ice sheet over North America. 
  
 +  * Harrison, S. P., Bartlein, P. J., Brovkin, V., Houweling, S., Kloster, S., & Prentice, I. C. (2018). The biomass burning contribution to climate-carbon-cycle feedback. Earth Syst. Dynam., 9(2), 663-677., https://doi.org/10.5194/esd-9-663-2018 
 +    * Quantifies the biomass burning contribution to climate-carbon-cycle feedback
  
-===== Chapter 6 =====+  * Li, G., Gerhart, L.M., Harrison, S.P., Ward, J., Harris, J., and Prentice, I.C., 2017. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation. Nature Scientific Reports 7, 43087., doi: 10.1038/srep43087. 
 +    * Shows that changes in carbon allocation between above- and below-ground components are necessary to explain tree growth under low CO2 conditions during the glacial. This has implications both for modelling vegetation, since current models assume that allocation is a fixed ratio, and for interpreting tree ring records as a climate signal. 
 + 
 +  * Martin Calvo, M., Prentice, I.C., Harrison, S.P., 2014. Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast. Biogeosciences, 11, 6017-6027. doi:10.5194/bg-11-6017-2014, doi:10.5194/bg-11-6017-2014a 
 +    * Demonstrates that changing CO2 since the Last Glacial Maximum has affected  fire regimes through altering productivity and hence fuel loads. By analogy, both rising CO2 and climate must be considered as risk factors for wildfire. 
 + 
 +  * Albani S., Balkanski Y., Mahowald N., Winckler G., Maggi V., Delmonte B.: Aerosol-climate interactions during the Last Glacial Maximum. Curr. Clim. Change Rep., 4, 99-114, doi:10.1007/s40641-018-0100-7, 2018., 10.1007/s40641-018-0100-7 
 +    * Recent invited review on aerosol-climate interaction during the LGM 
 + 
 +  * Yamamoto, A., Abe-Ouchi, A., Ohgaito, R., Ito, A., and Oka, A., 2019: Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust. Climate of the Past, 15, 981-996., https://doi.org/10.5194/cp-15-981-2019 
 +    * This paper reports our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.  
 + 
 +  * Lambert, F., A. Tagliabue, G. Shaffer, F. Lamy, G. Winckler, L. Farias, L. Gallardo, and R. De Pol-Holz (2015), Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates, Geophys. Res. Lett., 42(14), 6014-6023, doi:10.1002/2015GL064250, 10.1002/2015GL064250 
 +    * Shows the potential for increased dust depositions to reduce global CO2 concentrations 
 + 
 + 
 +===== Chapter 6: Short-Lived Climate Forcers ===== 
 + 
 +Number of selected references: **17**
  
   * Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E., Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills, M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701-2719, doi:10.5194/gmd-9-2701-2016, 2016, 10.5194/gmd-9-2701-2016, 2016   * Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E., Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills, M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701-2719, doi:10.5194/gmd-9-2701-2016, 2016, 10.5194/gmd-9-2701-2016, 2016
Line 399: Line 509:
     * Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs.     * Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs.
  
 +  * Emile-Geay, J., Cobb, K.M., Carré, M., Braconnot, P., Leloup, J., Zhou, Y., Harrison, S.P., Corrège, T., Collins, M., Driscoll, R., Elliot, M., McGregor, H.V., Schneider, B., Tudhope, A., 2015. Linkages between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nature Geoscience 9: 168-173. doi:10.1038/ngeo2608, doi:10.1038/ngeo2608
 +    * Shows that ENSO variance was reduced throughout most of the Holocene and that this quiescence is not obvioulsy related to orbital forcing. Climate models are unable to reproduce these observations.
 +
 +  * Albani S., Balkanski Y., Mahowald N., Winckler G., Maggi V., Delmonte B.: Aerosol-climate interactions during the Last Glacial Maximum. Curr. Clim. Change Rep., 4, 99-114, doi:10.1007/s40641-018-0100-7, 2018., 10.1007/s40641-018-0100-7
 +    * Recent invited review on aerosol-climate interaction during the LGM
 +
 +  * Lambert, F., J.-S. Kug, R. J. Park, N. Mahowald, G. Winckler, A. Abe-Ouchi, R. O'ishi, T. Takemura, and J.-H. Lee (2013), The role of mineral-dust aerosols in polar temperature amplification, Nat. Clim. Chang., 3(5), 487-491, doi:10.1038/nclimate1785, 10.1038/nclimate1785
 +    * Shows the polar amplification and potential radiative forcing effect of mineral dust aerosols. 
 +
 +  * Sánchez Goñi, M.F., Desprat, S., Daniau, A.-L., Bassinot, F., Polanco-Martinez, J.M., Harrison, S.P. and ACER contributors (2017). The ACER pollen and charcoal database : a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 9, 679-695., https://doi.org/10.5194/essd-9-679-2017
 +    * This global vegetation and fire data compilation shows the regional response to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century.
 +
 +  * Albani S., Mahowald N.: Paleodust insights onto dust impacts on climate. J. Clim., DOI: 10.1175/JCLI-D-18-0742.1, in press., 10.1175/JCLI-D-18-0742.1
 +    * Direct impacts of dust on radiation and surface climate, including on the West African monsoon, in different climates. Because dust both scatters and absorbs SW and LW radiation, dust DRE can be both positive or negative depending on the geographical location (therefore a global budget will tend to hide the magnitude of impacts of opposing sign); we propose to use the global average of the module of DRE as a more informative metric when specifically discussing dust impacts.
 +
 +
 +===== Chapter 7: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity =====
  
-===== Chapter 7 =====+Number of selected references: **54**
  
   * Braconnot, P., and M. Kageyama (2015), Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations, Phil. Trans. R. Soc. A, 373(2054), pii: 20140424., https://doi.org/10.1098/rsta.2014.0424   * Braconnot, P., and M. Kageyama (2015), Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations, Phil. Trans. R. Soc. A, 373(2054), pii: 20140424., https://doi.org/10.1098/rsta.2014.0424
Line 468: Line 595:
     * Using palaeo-climate comparisons to constrain future projections!     * Using palaeo-climate comparisons to constrain future projections!
  
-  * Marzin, C., Braconnot, P. and Kageyama, M. (2013). Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene. Climate Dynamics. 41: 2267-2286., n/a+  * Marzin, C., Braconnot, P. and Kageyama, M. (2013). Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene. Climate Dynamics. 41: 2267-2286., https://doi.org/10.1007/s00382-013-1948-9
     * This paper analyse the teleconnection between the remnant northern hemisphere ice-sheet in the early Holocene and fresh water fluxes induced by ice sheet melting on the African and Indian monsoons. It shows that despite similarities in the response to these two factors in the Atlantic the teleconnections are different, mainly because of differences in the way the thermohaline circulation is affected.      * This paper analyse the teleconnection between the remnant northern hemisphere ice-sheet in the early Holocene and fresh water fluxes induced by ice sheet melting on the African and Indian monsoons. It shows that despite similarities in the response to these two factors in the Atlantic the teleconnections are different, mainly because of differences in the way the thermohaline circulation is affected. 
  
-  * Luan, Y. H., et al. (2015). "Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5 ka BP." Climate Dynamics 44(3-4): 661-678., n/a+  * Luan, Y. H., et al. (2015). "Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5 ka BP." Climate Dynamics 44(3-4): 661-678., https://doi.org/10.1007/s00382-015-2467-7
     * Using as a reference a simulation of the early Holocene, the present study explores the relative contribution of ice-sheet and fresh water fluxes  on themean climate state and ENSO variability in the tropical Pacific.The freshwater flux impact on ocean circulation and atmospheric feedbacks enhances ENSO amplitude. A feedback analysis suggests that it is due to the wind-thermocline feedback. The remnant ice sheett does not induce significant change in ENSO. Itexhibits a slight SST variability increase at the east coast and a reduction in the middle of the basin driven by the net. The freshwater flux forcing strengthens the amplitude of EP El Niño events. This mansucripts halp thus to unerstand the diversity of EL Niño event and the response of El Niño to external forcings.      * Using as a reference a simulation of the early Holocene, the present study explores the relative contribution of ice-sheet and fresh water fluxes  on themean climate state and ENSO variability in the tropical Pacific.The freshwater flux impact on ocean circulation and atmospheric feedbacks enhances ENSO amplitude. A feedback analysis suggests that it is due to the wind-thermocline feedback. The remnant ice sheett does not induce significant change in ENSO. Itexhibits a slight SST variability increase at the east coast and a reduction in the middle of the basin driven by the net. The freshwater flux forcing strengthens the amplitude of EP El Niño events. This mansucripts halp thus to unerstand the diversity of EL Niño event and the response of El Niño to external forcings. 
  
Line 516: Line 643:
     * The paper describes one of the first attempts of a fully coupled transient climate-ice sheet simulation of the Last Interglacial period. The results suggest that the relative timing of sea-level contributions from the Greenland and Antarctic ice sheets are important for the interpretation of paleo sea-level records from that period.      * The paper describes one of the first attempts of a fully coupled transient climate-ice sheet simulation of the Last Interglacial period. The results suggest that the relative timing of sea-level contributions from the Greenland and Antarctic ice sheets are important for the interpretation of paleo sea-level records from that period. 
  
 +  * Bartlein, P.J., S.P. Harrison and K. Izumi, 2017, Underlying causes of Eurasian mid-continental aridity in simulations of mid-Holocene climate, Geophysical Research Letters. 44:1-9, http://dx.doi.org/10.1002/2017GL074476
 +    * Discusses a long-standing mismatch between climate-model simulations and paleo observations and relates these to present-day biases in atmospheric circulation and moisture flux
  
-===== Chapter 8 =====+  * Izumi, K. and P.J. Bartlein, 2016, North American paleoclimate reconstructions for the last glacial maximum using an inverse-modeling through iterative-forward-modeling (IMIFM) approach applied to pollen data. Geophysical Research Letters. 43:1-8, http://dx.doi.org/10.1002/2016GL070152  
 +    * Describes a method for interative forward-modeling reconstructions of paleoclimates 
 + 
 +  * Harrison, S.P., P.J. Bartlein & I.C. Prentice, 2016, What have we learnt from palaeoclimate simulations? Journal of Quaternary Science31:363-385, https://doi.org/10.1002/jqs.2842  
 +    * Overview of results from comparisons of climate-model simulations and paleoclimatic data syntheses 
 + 
 +  * Izumi, K., Bartlein, P.J., Harrison, S.P., 2015. Energy-balance mechanisms underlying consistent large-scale temperature responses in warm and cold climates. Climate Dynamics. 44:3111-3127., https://doi.org/10.1007/s00382-014-2189-2 
 +    * Explains the energy-balance sources of the large-scale temperature responses in warm and cold climates 
 + 
 +  * Harrison, S.P., Bartlein, P.J., Brewer, S., Prentice, I.C., Boyd, M., Hessler, I., Holmgren, K., Izumi, K., Willis, K., 2014. Climate model benchmarking with glacial and mid-Holocene climates. Climate Dynamics 43, 671-688., https://doi.org/10.1007/s00382-013-1922-6 
 +    * Systematic benchmarking of the PMIP3 models 
 + 
 +  * Martin Calvo, M., Prentice, I.C., Harrison, S.P., 2014. Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast. Biogeosciences, 11, 6017-6027. doi:10.5194/bg-11-6017-2014, doi:10.5194/bg-11-6017-2014a 
 +    * Demonstrates that changing CO2 since the Last Glacial Maximum has affected  fire regimes through altering productivity and hence fuel loads. By analogy, both rising CO2 and climate must be considered as risk factors for wildfire. 
 + 
 +  * Izumi, K., P.J. Bartlein and S.P. Harrison, 2013, Consistent large-scale temperature responses in warm and cold climates, Geophysical Research Letters, https://dow.org/10.1002/grl.50350  
 +    * Demonstrates that there are consistent large-scale temperature responses in warm and cold climates using paleo simulations and reconstructions along with future simulations 
 + 
 +  * Prado, L. F., Wainer, I., Chiessi, C. M. (2013). Mid-Holocene PMIP3/CMIP5 model results: Intercomparison for the South American Monsoon System. The Holocene, Vol 23, Issue 12, 1915-1920., 10.1177/0959683613505336 
 +    * This paper contains an unpdated proxy compilation for South American Monsoon System during the Mid-Holocene, and also a data-model comparison using the PMIP3 models. 
 + 
 +  * Goelzer, H., Huybrechts, P., Loutre, M. F., and Fichefet, T.: Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial, Clim. Past, 12, 1721-1737, doi:10.5194/cp-12-1721-2016, 2016., 10.5194/cp-12-1721-2016 
 +    * Paper highlights the important role of freshwater fluxes for the climate, ice sheet and sea-level evolution at the onset of the last Interglacial. 
 + 
 +  * Albani S., Balkanski Y., Mahowald N., Winckler G., Maggi V., Delmonte B.: Aerosol-climate interactions during the Last Glacial Maximum. Curr. Clim. Change Rep., 4, 99-114, doi:10.1007/s40641-018-0100-7, 2018., 10.1007/s40641-018-0100-7 
 +    * Recent invited review on aerosol-climate interaction during the LGM 
 + 
 +  * Chandan and Peltier 2018: On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures. Climate of the past, 14, 825-856, https://doi.org/10.5194/cp-14-825-2018 
 +    * This paper derives a hierarchy of climate sensitivities, applicable on various timescales, from modelling studies of the future-like warm period of the mid-Pliocene. 
 + 
 +  * Ibarra, D. E., Oster, J. L., Winnick, M. J., Caves Rugenstein, J. K., Byrne, M. P., & Chamberlain, C. P. (2018). Warm and cold wet states in the western United States during the Pliocene-Pleistocene. Geology, 46(4), 355-358., 10.1130/G39962.1 
 +    * Water cycle and regional moisture energy balance budget change constrained by geologic/paleoclimate data and PMIP models in semi-arid region. 
 + 
 +  * Cuesta-Valero, F. J., García-García, A., Beltrami, H., Zorita, E., & Jaume-Santero, F. (2019). Long-term Surface Temperature (LoST) database as a complement for GCM preindustrial simulations. Climate of the Past, 15(3), 1099-1111, https://doi.org/10.5194/cp-15-1099-2019 
 +    * The paper provides with a new long-term past absolute temperature database that can help to constrain model estimates of climate sensitivity. 
 + 
 +  * Yoshimori, M. and Suzuki, M.: The relevance of mid-Holocene Arctic warming to the future, Clim. Past, 15, 1375-1394, https://doi.org/10.5194/cp-15-1375-2019, 2019., 10.5194/cp-15-1375-2019 
 +    * The paper provides a physical basis of why the mid-Holocene Arctic warming information is useful for the future, i.e., paleo-constraint for the future. 
 + 
 +  * Sánchez Goñi, M.F., Ferretti, P., Polanco-Martinez, J.M., Rodrigues, T., Alonso-Garcia, M., Rodriguez-Tovar, F.J.,  Dorador, J., Desprat, S. (2019). Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles. Earth and Planetary Science Letters 511, 117-129., https://doi.org/10.1016/j.epsl.2019.01.032. 
 +    * During MIS 17 (700 ka), a cold interglacial characterized by the lowest atmospheric CO2 concentrations of the last 800,000 years, the Iberian Peninsula was paradoxically marked by the maximum in the Mediterranean forest expansion indicating strong winter precipitation and summer warmth. These data indicate a decoupling between global and regional climates. This work also highlights the important contribution of the westerlies leading to the strong 100-kyr ice age cycles. These atmospheric changes remain, however, a key area of uncertainty in past and future climate model simulations. 
 + 
 +  * Albani S., Mahowald N.: Paleodust insights onto dust impacts on climate. J. Clim., DOI: 10.1175/JCLI-D-18-0742.1, in press., 10.1175/JCLI-D-18-0742.1 
 +    * Direct impacts of dust on radiation and surface climate, including on the West African monsoon, in different climates. Because dust both scatters and absorbs SW and LW radiation, dust DRE can be both positive or negative depending on the geographical location (therefore a global budget will tend to hide the magnitude of impacts of opposing sign); we propose to use the global average of the module of DRE as a more informative metric when specifically discussing dust impacts. 
 + 
 + 
 +===== Chapter 8: Water Cycle Changes ===== 
 + 
 +Number of selected references: **48**
  
   * Braconnot, P., and M. Kageyama (2015), Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations, Phil. Trans. R. Soc. A, 373(2054), pii: 20140424., https://doi.org/10.1098/rsta.2014.0424   * Braconnot, P., and M. Kageyama (2015), Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations, Phil. Trans. R. Soc. A, 373(2054), pii: 20140424., https://doi.org/10.1098/rsta.2014.0424
Line 597: Line 774:
     * We analyze 9 PMIP3 simulations to argue that wet conditions in western North America at LGM were caused by a combination of dynamic and thermodynamic factors. These same factors, working in the opposite direction, are projected to cause regional drying in western North America under increased greenhouse gas concentrations, indicating continuity from past to future in the mechanisms altering hydroclimate.     * We analyze 9 PMIP3 simulations to argue that wet conditions in western North America at LGM were caused by a combination of dynamic and thermodynamic factors. These same factors, working in the opposite direction, are projected to cause regional drying in western North America under increased greenhouse gas concentrations, indicating continuity from past to future in the mechanisms altering hydroclimate.
  
-  * Zheng, W. P. and Braconnot, P. (2013). Characterization of Model Spread in PMIP2 Mid-Holocene Simulations of the African Monsoon. Journal of Climate. 26: 1192-1210., n/a+  * Zheng, W. P. and Braconnot, P. (2013). Characterization of Model Spread in PMIP2 Mid-Holocene Simulations of the African Monsoon. Journal of Climate. 26: 1192-1210., https://doi.org/10.1175/JCLI-D-12-00071.1
     * Using a classification of the monsoonal convective regimes fora subset of sevenPMIP mid Holocene simulations, this paper show that two categories of model can be defined based on their differences insimulating deep and moderate convective regimes in the PI simulations. Changes in precipitation at 6 ka are dominated by changes in the large-scale dynamics for most of the PMIP2 models and are characterized bya shift in the monsoonal circulation toward deeper convective regimes. The results indicate that systematic model biases in simulating the radiation and heat fluxes could explain the damping of the meridional temperature gradient over West Africa and thereby the underestimation of precipitation in the Sahel-Sahara region.     * Using a classification of the monsoonal convective regimes fora subset of sevenPMIP mid Holocene simulations, this paper show that two categories of model can be defined based on their differences insimulating deep and moderate convective regimes in the PI simulations. Changes in precipitation at 6 ka are dominated by changes in the large-scale dynamics for most of the PMIP2 models and are characterized bya shift in the monsoonal circulation toward deeper convective regimes. The results indicate that systematic model biases in simulating the radiation and heat fluxes could explain the damping of the meridional temperature gradient over West Africa and thereby the underestimation of precipitation in the Sahel-Sahara region.
  
-  * Marzin, C., Kallel, N., Kageyama, M., Duplessy, J. C. and Braconnot, P. (2013). Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments. Climate of the Past. 9: 2135-2151, n/a+  * Marzin, C., Kallel, N., Kageyama, M., Duplessy, J. C. and Braconnot, P. (2013). Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments. Climate of the Past. 9: 2135-2151, https://doi.org/10.5194/cp-9-2135-2013
     * This study analyse the processes that can explain the relationship between the Indian monsoon and the North Atlantic climate under glacial conditions,  by increasing the freshwater flux in the North Atlantic and reducing the intensity of the Atlantic meridional overturning circulation. It shows that reduced indian monsoon is associated to changes in the continental runoff and local hydrological cycle that are responsible for the changes in salinity of the Bay of Bengal in the model. Sensitivity experiments also highlight that  the changes over the tropical Atlantic are essential in triggering perturbations of the subtropical jet over Eurasia that in turn affect the intensity of the Indian monsoon.     * This study analyse the processes that can explain the relationship between the Indian monsoon and the North Atlantic climate under glacial conditions,  by increasing the freshwater flux in the North Atlantic and reducing the intensity of the Atlantic meridional overturning circulation. It shows that reduced indian monsoon is associated to changes in the continental runoff and local hydrological cycle that are responsible for the changes in salinity of the Bay of Bengal in the model. Sensitivity experiments also highlight that  the changes over the tropical Atlantic are essential in triggering perturbations of the subtropical jet over Eurasia that in turn affect the intensity of the Indian monsoon.
  
-  * Marzin, C., Braconnot, P. and Kageyama, M. (2013). Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene. Climate Dynamics. 41: 2267-2286., n/a+  * Marzin, C., Braconnot, P. and Kageyama, M. (2013). Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene. Climate Dynamics. 41: 2267-2286., https://doi.org/10.1007/s00382-013-1948-9
     * This paper analyse the teleconnection between the remnant northern hemisphere ice-sheet in the early Holocene and fresh water fluxes induced by ice sheet melting on the African and Indian monsoons. It shows that despite similarities in the response to these two factors in the Atlantic the teleconnections are different, mainly because of differences in the way the thermohaline circulation is affected.      * This paper analyse the teleconnection between the remnant northern hemisphere ice-sheet in the early Holocene and fresh water fluxes induced by ice sheet melting on the African and Indian monsoons. It shows that despite similarities in the response to these two factors in the Atlantic the teleconnections are different, mainly because of differences in the way the thermohaline circulation is affected. 
  
-  * Luan, Y. H., et al. (2015). "Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5 ka BP." Climate Dynamics 44(3-4): 661-678., n/a+  * Luan, Y. H., et al. (2015). "Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5 ka BP." Climate Dynamics 44(3-4): 661-678., https://doi.org/10.1007/s00382-015-2467-7
     * Using as a reference a simulation of the early Holocene, the present study explores the relative contribution of ice-sheet and fresh water fluxes  on themean climate state and ENSO variability in the tropical Pacific.The freshwater flux impact on ocean circulation and atmospheric feedbacks enhances ENSO amplitude. A feedback analysis suggests that it is due to the wind-thermocline feedback. The remnant ice sheett does not induce significant change in ENSO. Itexhibits a slight SST variability increase at the east coast and a reduction in the middle of the basin driven by the net. The freshwater flux forcing strengthens the amplitude of EP El Niño events. This mansucripts halp thus to unerstand the diversity of EL Niño event and the response of El Niño to external forcings.      * Using as a reference a simulation of the early Holocene, the present study explores the relative contribution of ice-sheet and fresh water fluxes  on themean climate state and ENSO variability in the tropical Pacific.The freshwater flux impact on ocean circulation and atmospheric feedbacks enhances ENSO amplitude. A feedback analysis suggests that it is due to the wind-thermocline feedback. The remnant ice sheett does not induce significant change in ENSO. Itexhibits a slight SST variability increase at the east coast and a reduction in the middle of the basin driven by the net. The freshwater flux forcing strengthens the amplitude of EP El Niño events. This mansucripts halp thus to unerstand the diversity of EL Niño event and the response of El Niño to external forcings. 
  
-  * Saint-Lu, M., et al. (2015). "Changes in the ENSO/SPCZ relationship from past to future climates." Earth and Planetary Science Letters 412: 18-24., n/a+  * Saint-Lu, M., et al. (2015). "Changes in the ENSO/SPCZ relationship from past to future climates." Earth and Planetary Science Letters 412: 18-24., http://doi.org/10.1016/j.epsl.2014.12.033
     * This study considers a set of paleoclimate and future climate simulations. It shows that changes in the background tropical state largely control the mean SPCZ location. In contrast, changes in the background tropical state do not directly control the interannual variability of the SPCZ location. The relationship between ENSO and the SPCZ location varies from one climate to another. We thus demonstrate that the teleconnection mechanisms inferred from the modern climate cannot be directly extrapolated to other climates. This study therefore calls for a cautious interpretation of climate reconstructions from environmental indicators in the Southwest Pacific with regard to ENSO variations.     * This study considers a set of paleoclimate and future climate simulations. It shows that changes in the background tropical state largely control the mean SPCZ location. In contrast, changes in the background tropical state do not directly control the interannual variability of the SPCZ location. The relationship between ENSO and the SPCZ location varies from one climate to another. We thus demonstrate that the teleconnection mechanisms inferred from the modern climate cannot be directly extrapolated to other climates. This study therefore calls for a cautious interpretation of climate reconstructions from environmental indicators in the Southwest Pacific with regard to ENSO variations.
  
Line 624: Line 801:
     * We review the principal proxy data available for hydroclimatic reconstructionsover the Common Era (CE) and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE.     * We review the principal proxy data available for hydroclimatic reconstructionsover the Common Era (CE) and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE.
  
 +  * Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S.P., Baker, A., Boyd, M., Kaushal, N., Masood Ahmed, S., Arienzo, M., Brahim, Y.A., Bajo, P., Braun, K., Burstyn, Y., Chawchai, S., Duan, W., Hatvani, I.G., Hu, J., Kern, Z., Labuhn, I., Lachniet, M., Lechleiter, F.A., Lorrey, A., Pérez-Mejías, C., Pickering, R., Scroxton, N. and SISAL Working Group Members, 2018. The SISAL database: a global resource to document water and carbon isotope records from speleothems. Earth System Science Data 10:1687-1713. , https://doi.org/10.5194/essd-10-1687-2018
 +    * Documents a new data set of oxygen isotope data from speleothems that will can be used for benchmarking isotope-enabled palaeoclimate simulations
  
-===== Chapter 9 =====+  * Bartlein, P.J., S.P. Harrison and K. Izumi, 2017, Underlying causes of Eurasian mid-continental aridity in simulations of mid-Holocene climate, Geophysical Research Letters. 44:1-9, http://dx.doi.org/10.1002/2017GL074476 
 +    * Discusses a long-standing mismatch between climate-model simulations and paleo observations and relates these to present-day biases in atmospheric circulation and moisture flux 
 + 
 +  * Prentice, I.C., Cleator, S.F., Huang, Y.F., Harrison, S.P., Roulstone, I., 2017.  Reconstructing ice -age climates: quantifying low-CO2 effects on plants. Global and Planetary Change 149: 166-176.,  http://dx.doi.org/10.1016/j.gloplacha.2016.12.012 
 +    * Provides a way of taking account of the ecophysicological impacts of low CO2 during glacial periods in making climate reconstructions of moisture variables from fossil pollen. The water-use efficiency of plants in reduced under low CO2 and this results in vegetation appearing to reflect more arid conditions that in fact prevailed. The paper provides a correction which can be applied to existing pollen-based reconstructions of moisture to take account of this. 
 + 
 +  * Perez-Sanz, A., Li, G., Gonzalez, P., Harrison, S.P., 2014. Evaluation of seasonal climates of northern Africa and the Mediterranean in the CMIP5 simulations.  Climate of the Past 10: 551-568. doi:10.5194/cp-10-551-2014, doi:10.5194/cp-10-551-2014 
 +    * Provides an evaluation of the ability of the CMIP5 simulations to simukate enhanced monsoons during the mid-Holocene. 
 + 
 +  * Li, G., S.P. Harrison, P.J. Bartlein, K. Izumi & I.C. Prentice, 2013, Precipitation scaling with temperature in warm and cold climates: an analysis of CMIP5 simulations. Geophysical Research Letters:, https://doi.org/10.1002/grl.50730  
 +    * Examines the systematic scaling of precipitation changes in warm and cold climates 
 + 
 +  * Morrill, C., Meador, E., Livneh, B., Liefert, D.T., Shuman, B.N. 2019. Quantitative model-data comparison of mid-Holocene lake-level change in the central Rocky Mountains. Climate Dynamics. , 10.1007/s00382-019-04633-3 
 +    * We used several hydrologic forward models in a form of downscaling to quantitatively compare PMIP3 simulations with lake level records. We found that the severity of mid-Holocene drought in western/central North America about 6,000 years ago is consistent with local winter precipitation reductions of up to 50%, and that PMIP3 models fail to reproduce the severity of this drought. 
 + 
 +  * Oster, J. L., Ibarra, D. E., Winnick, M. J., & Maher, K. (2015). Steering of westerly storms over western North America at the Last Glacial Maximum. Nature Geoscience, 8(3), 201., 10.1038/ngeo2365 
 +    * Evaluation of model (PMIP3/PMIP2) performance using paleoclimate data, constraints on precipitation change caused be climate forcing and P-E changes observed using paleoclimate records. 
 + 
 +  * Ibarra, D. E., Oster, J. L., Winnick, M. J., Caves Rugenstein, J. K., Byrne, M. P., & Chamberlain, C. P. (2018). Warm and cold wet states in the western United States during the Pliocene-Pleistocene. Geology, 46(4), 355-358., 10.1130/G39962.1 
 +    * Water cycle and regional moisture energy balance budget change constrained by geologic/paleoclimate data and PMIP models in semi-arid region. 
 + 
 +  * R D'Agostino, J Bader, S Bordoni, D Ferreira, J Jungclaus (2019): Northern Hemisphere Monsoon Response to Mid-Holocene Orbital Forcing and Greenhouse Gas-Induced Global Warming, Geophysical Research Letters 46 (3), 1591-1601,  https://doi.org/10.1029/2018GL081589 
 +    * Mechanisms driving monsoon response to midHolocene orbital forcing and rcp8.5 greenhouse-induced global warming scenario are different. A decomposition of the moisture budget in thermodynamic and dynamic contributions suggests that under future global warming, the weaker response of the African, Indian, and North American monsoons results from a compensation between both components. The dynamic component, primarily constrained by changes in net energy input over land, determines instead most of the mid-Holocene land monsoonal rainfall response. This process-oriented study takes an important step toward improving our understanding of monsoon dynamics, quantifying the important role of atmospheric circulation changes in monsoonal precipitation changes by comparing and contrasting past and future climates. Our results highlight that mean surface warming and interhemispheric contrast in surface warming are poor indicators of the monsoonal precipitation response. Rather, the monsoon response is constrained by the integrated energy balance, which accounts for changes at the surface as well as at the top of the atmosphere. This explains why the mid-Holocene does not represent an analogue for future warming. 
 + 
 +  * A.Kislov. On the interpretation of century-millennium-scale variations of the Black Sea level during the first quarter of the Holocene.  Quaternary International. Volume 465, Part A, 2018, Pages 99-104., https://doi.org/10.1016/j.quaint.2016.09.008 
 +    *  model-data, and data syntheses 
 + 
 +  * Kislov A. The interpretation of secular Caspian Sea level records during the Holocene  Quaternary International, 2016, vol. 409,  39-43 , https://doi.org/10.1016/j.quaint.2015.07.026 
 +    *  data syntheses : 
 + 
 +  * Yanko-Hombach, V., Kislov, A., Late Pleistocene and Holocene sea-level dynamics in the Caspian and Black Seas: Data synthesis and Paradoxical interpretations, Quaternary International (2017) , https://doi.org/10.1016/j.quaint.2017.11.030 
 +    * model-data, and data syntheses 
 + 
 +  * Kislov A. 2018 Secular Variability of the Caspian Sea Level.  Russian Meteorology and Hydrology, vol. 43, No 10, 679-685  , 10.3103/S1068373918100072 
 +    * data syntheses 
 + 
 + 
 +===== Chapter 9: Ocean, Cryosphere, and Sea Level Change ===== 
 + 
 +Number of selected references: **42**
  
   * Muglia, J., and Schmittner, A. (2015)Glacial Atlantic overturning increased by wind stress in climate modelsGeophysical Research Letters, 42., https://doi.org/10.1002/2015GL064583   * Muglia, J., and Schmittner, A. (2015)Glacial Atlantic overturning increased by wind stress in climate modelsGeophysical Research Letters, 42., https://doi.org/10.1002/2015GL064583
Line 681: Line 899:
     * Using palaeo-climate comparisons to constrain future projections!     * Using palaeo-climate comparisons to constrain future projections!
  
-  * Zheng, W. P. and Braconnot, P. (2013). Characterization of Model Spread in PMIP2 Mid-Holocene Simulations of the African Monsoon. Journal of Climate. 26: 1192-1210., n/a+  * Zheng, W. P. and Braconnot, P. (2013). Characterization of Model Spread in PMIP2 Mid-Holocene Simulations of the African Monsoon. Journal of Climate. 26: 1192-1210., https://doi.org/10.1175/JCLI-D-12-00071.1
     * Using a classification of the monsoonal convective regimes fora subset of sevenPMIP mid Holocene simulations, this paper show that two categories of model can be defined based on their differences insimulating deep and moderate convective regimes in the PI simulations. Changes in precipitation at 6 ka are dominated by changes in the large-scale dynamics for most of the PMIP2 models and are characterized bya shift in the monsoonal circulation toward deeper convective regimes. The results indicate that systematic model biases in simulating the radiation and heat fluxes could explain the damping of the meridional temperature gradient over West Africa and thereby the underestimation of precipitation in the Sahel-Sahara region.     * Using a classification of the monsoonal convective regimes fora subset of sevenPMIP mid Holocene simulations, this paper show that two categories of model can be defined based on their differences insimulating deep and moderate convective regimes in the PI simulations. Changes in precipitation at 6 ka are dominated by changes in the large-scale dynamics for most of the PMIP2 models and are characterized bya shift in the monsoonal circulation toward deeper convective regimes. The results indicate that systematic model biases in simulating the radiation and heat fluxes could explain the damping of the meridional temperature gradient over West Africa and thereby the underestimation of precipitation in the Sahel-Sahara region.
  
-  * Marzin, C., Kallel, N., Kageyama, M., Duplessy, J. C. and Braconnot, P. (2013). Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments. Climate of the Past. 9: 2135-2151, n/a+  * Marzin, C., Kallel, N., Kageyama, M., Duplessy, J. C. and Braconnot, P. (2013). Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments. Climate of the Past. 9: 2135-2151, https://doi.org/10.5194/cp-9-2135-2013
     * This study analyse the processes that can explain the relationship between the Indian monsoon and the North Atlantic climate under glacial conditions,  by increasing the freshwater flux in the North Atlantic and reducing the intensity of the Atlantic meridional overturning circulation. It shows that reduced indian monsoon is associated to changes in the continental runoff and local hydrological cycle that are responsible for the changes in salinity of the Bay of Bengal in the model. Sensitivity experiments also highlight that  the changes over the tropical Atlantic are essential in triggering perturbations of the subtropical jet over Eurasia that in turn affect the intensity of the Indian monsoon.     * This study analyse the processes that can explain the relationship between the Indian monsoon and the North Atlantic climate under glacial conditions,  by increasing the freshwater flux in the North Atlantic and reducing the intensity of the Atlantic meridional overturning circulation. It shows that reduced indian monsoon is associated to changes in the continental runoff and local hydrological cycle that are responsible for the changes in salinity of the Bay of Bengal in the model. Sensitivity experiments also highlight that  the changes over the tropical Atlantic are essential in triggering perturbations of the subtropical jet over Eurasia that in turn affect the intensity of the Indian monsoon.
  
-  * Howell, F. W., Haywood, A. M., Otto-Bliesner, B. L., Bragg, F., Chan, W.-L., Chandler, M. A., Contoux, C., Kamae, Y., Abe-Ouchi, A., Rosenbloom, N. A., Stepanek, C. and Zhang, Z.: Arctic sea ice simulation in the PlioMIP ensemble, Clim. Past, 12, 749-767, doi:10.5194/cp-12-749-2016, 2016., 10.5194/cp-12-749-2016+  * Howell, F. W., Haywood, A. M., Otto-Bliesner, B. L., Bragg, F., Chan, W.-L., Chandler, M. A., Contoux, C., Kamae, Y., Abe-Ouchi, A., Rosenbloom, N. A., Stepanek, C. and Zhang, Z.: Arctic sea ice simulation in the PlioMIP ensemble, Clim. Past, 12, 749-767, doi:10.5194/cp-12-749-2016, 2016., http://doi.org/10.5194/cp-12-749-2016
     * This paper describes the response of Artic sea-ice to the Pliocene warm climate (PlioMIP1) into 8 general circulation models     * This paper describes the response of Artic sea-ice to the Pliocene warm climate (PlioMIP1) into 8 general circulation models
  
Line 723: Line 941:
     * The paper describes one of the first attempts of a fully coupled transient climate-ice sheet simulation of the Last Interglacial period. The results suggest that the relative timing of sea-level contributions from the Greenland and Antarctic ice sheets are important for the interpretation of paleo sea-level records from that period.      * The paper describes one of the first attempts of a fully coupled transient climate-ice sheet simulation of the Last Interglacial period. The results suggest that the relative timing of sea-level contributions from the Greenland and Antarctic ice sheets are important for the interpretation of paleo sea-level records from that period. 
  
 +  * Ziemen, F.A. et al., 2019: Heinrich events show two-stage climate response in transient glacial simulations. Clim. Past, 15, 153-168, 10.5194/cp-15-153-2019
 +    * In previous Heinrich event studies, the climate changes were either seen as resulting from freshwater released from the melt of the discharged icebergs or by ice sheet elevation changes. With a coupled ice sheet-climate model, we show that both effects are relevant with the freshwater effects preceding the ice sheet elevation effects. 
  
-===== Chapter 10 =====+  * Goelzer, H., Huybrechts, P., Loutre, M. F., and Fichefet, T.: Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model, Clim. Past, 12, 2195-2213, doi:10.5194/cp-12-2195-2016, 2016., 10.5194/cp-12-2195-2016 
 +    * First fully coupled ice sheet-climate simulation of the LIG considering sea-level contributions from the Greenland and Antarctic ice sheets in a consistent framework. 
 + 
 +  * Goelzer, H., Huybrechts, P., Loutre, M. F., and Fichefet, T.: Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial, Clim. Past, 12, 1721-1737, doi:10.5194/cp-12-1721-2016, 2016., 10.5194/cp-12-1721-2016 
 +    * Paper highlights the important role of freshwater fluxes for the climate, ice sheet and sea-level evolution at the onset of the last Interglacial. 
 + 
 +  * Chandan and Peltier, 2017: Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions. Climate of the Past, 13, 919-942, https://doi.org/10.5194/cp-13-919-2017 
 +    * This paper reports on the first time that an un-tuned coupled-climate model has reproduced with very high fidelity the features of the mid-Pliocene warm period. 
 + 
 +  * Chandan and Peltier 2018: On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures. Climate of the past, 14, 825-856, https://doi.org/10.5194/cp-14-825-2018 
 +    * This paper derives a hierarchy of climate sensitivities, applicable on various timescales, from modelling studies of the future-like warm period of the mid-Pliocene. 
 + 
 +  * Yoshimori, M. and Suzuki, M.: The relevance of mid-Holocene Arctic warming to the future, Clim. Past, 15, 1375-1394, https://doi.org/10.5194/cp-15-1375-2019, 2019., 10.5194/cp-15-1375-2019 
 +    * The paper provides a physical basis of why the mid-Holocene Arctic warming information is useful for the future, i.e., paleo-constraint for the future. 
 + 
 +  * A.Kislov. On the interpretation of century-millennium-scale variations of the Black Sea level during the first quarter of the Holocene.  Quaternary International. Volume 465, Part A, 2018, Pages 99-104., https://doi.org/10.1016/j.quaint.2016.09.008 
 +    *  model-data, and data syntheses 
 + 
 +  * Kislov A. The interpretation of secular Caspian Sea level records during the Holocene  Quaternary International, 2016, vol. 409,  39-43 , https://doi.org/10.1016/j.quaint.2015.07.026 
 +    *  data syntheses : 
 + 
 +  * Yanko-Hombach, V., Kislov, A., Late Pleistocene and Holocene sea-level dynamics in the Caspian and Black Seas: Data synthesis and Paradoxical interpretations, Quaternary International (2017) , https://doi.org/10.1016/j.quaint.2017.11.030 
 +    * model-data, and data syntheses 
 + 
 +  * Kislov A. 2018 Secular Variability of the Caspian Sea Level.  Russian Meteorology and Hydrology, vol. 43, No 10, 679-685  , 10.3103/S1068373918100072 
 +    * data syntheses 
 + 
 + 
 +===== Chapter 10: Linking Global to Regional Climate Change ===== 
 + 
 +Number of selected references: **64**
  
   * Zhu, J., Z.Y. Liu, E.C. Brady, B.L. Otto-Bliesner, S.A. Marcott, J. Zhang, A. Wang, D. Noone, R. Tomas, J. Nusbaumer, T. Wong, A. Jahn, and C. Tabor, 2017: Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model. Geophysical Research Letters, 44, 6984-6992., n/a   * Zhu, J., Z.Y. Liu, E.C. Brady, B.L. Otto-Bliesner, S.A. Marcott, J. Zhang, A. Wang, D. Noone, R. Tomas, J. Nusbaumer, T. Wong, A. Jahn, and C. Tabor, 2017: Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model. Geophysical Research Letters, 44, 6984-6992., n/a
Line 828: Line 1078:
     * Using palaeo-climate comparisons to constrain future projections!     * Using palaeo-climate comparisons to constrain future projections!
  
-  * Marzin, C., Kallel, N., Kageyama, M., Duplessy, J. C. and Braconnot, P. (2013). Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments. Climate of the Past. 9: 2135-2151, n/a+  * Marzin, C., Kallel, N., Kageyama, M., Duplessy, J. C. and Braconnot, P. (2013). Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments. Climate of the Past. 9: 2135-2151, https://doi.org/10.5194/cp-9-2135-2013
     * This study analyse the processes that can explain the relationship between the Indian monsoon and the North Atlantic climate under glacial conditions,  by increasing the freshwater flux in the North Atlantic and reducing the intensity of the Atlantic meridional overturning circulation. It shows that reduced indian monsoon is associated to changes in the continental runoff and local hydrological cycle that are responsible for the changes in salinity of the Bay of Bengal in the model. Sensitivity experiments also highlight that  the changes over the tropical Atlantic are essential in triggering perturbations of the subtropical jet over Eurasia that in turn affect the intensity of the Indian monsoon.     * This study analyse the processes that can explain the relationship between the Indian monsoon and the North Atlantic climate under glacial conditions,  by increasing the freshwater flux in the North Atlantic and reducing the intensity of the Atlantic meridional overturning circulation. It shows that reduced indian monsoon is associated to changes in the continental runoff and local hydrological cycle that are responsible for the changes in salinity of the Bay of Bengal in the model. Sensitivity experiments also highlight that  the changes over the tropical Atlantic are essential in triggering perturbations of the subtropical jet over Eurasia that in turn affect the intensity of the Indian monsoon.
  
-  * Luan, Y. H., et al. (2015). "Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5 ka BP." Climate Dynamics 44(3-4): 661-678., n/a+  * Luan, Y. H., et al. (2015). "Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5 ka BP." Climate Dynamics 44(3-4): 661-678., https://doi.org/10.1007/s00382-015-2467-7
     * Using as a reference a simulation of the early Holocene, the present study explores the relative contribution of ice-sheet and fresh water fluxes  on themean climate state and ENSO variability in the tropical Pacific.The freshwater flux impact on ocean circulation and atmospheric feedbacks enhances ENSO amplitude. A feedback analysis suggests that it is due to the wind-thermocline feedback. The remnant ice sheett does not induce significant change in ENSO. Itexhibits a slight SST variability increase at the east coast and a reduction in the middle of the basin driven by the net. The freshwater flux forcing strengthens the amplitude of EP El Niño events. This mansucripts halp thus to unerstand the diversity of EL Niño event and the response of El Niño to external forcings.      * Using as a reference a simulation of the early Holocene, the present study explores the relative contribution of ice-sheet and fresh water fluxes  on themean climate state and ENSO variability in the tropical Pacific.The freshwater flux impact on ocean circulation and atmospheric feedbacks enhances ENSO amplitude. A feedback analysis suggests that it is due to the wind-thermocline feedback. The remnant ice sheett does not induce significant change in ENSO. Itexhibits a slight SST variability increase at the east coast and a reduction in the middle of the basin driven by the net. The freshwater flux forcing strengthens the amplitude of EP El Niño events. This mansucripts halp thus to unerstand the diversity of EL Niño event and the response of El Niño to external forcings. 
  
-  * Saint-Lu, M., et al. (2015). "Changes in the ENSO/SPCZ relationship from past to future climates." Earth and Planetary Science Letters 412: 18-24., n/a+  * Saint-Lu, M., et al. (2015). "Changes in the ENSO/SPCZ relationship from past to future climates." Earth and Planetary Science Letters 412: 18-24., http://doi.org/10.1016/j.epsl.2014.12.033
     * This study considers a set of paleoclimate and future climate simulations. It shows that changes in the background tropical state largely control the mean SPCZ location. In contrast, changes in the background tropical state do not directly control the interannual variability of the SPCZ location. The relationship between ENSO and the SPCZ location varies from one climate to another. We thus demonstrate that the teleconnection mechanisms inferred from the modern climate cannot be directly extrapolated to other climates. This study therefore calls for a cautious interpretation of climate reconstructions from environmental indicators in the Southwest Pacific with regard to ENSO variations.     * This study considers a set of paleoclimate and future climate simulations. It shows that changes in the background tropical state largely control the mean SPCZ location. In contrast, changes in the background tropical state do not directly control the interannual variability of the SPCZ location. The relationship between ENSO and the SPCZ location varies from one climate to another. We thus demonstrate that the teleconnection mechanisms inferred from the modern climate cannot be directly extrapolated to other climates. This study therefore calls for a cautious interpretation of climate reconstructions from environmental indicators in the Southwest Pacific with regard to ENSO variations.
  
-  * Blanchet, C. L., Contoux, C., Leduc, G.: Runoff and precipitation dynamics in the Blue and White Nile catchments during the mid-Holocene: a data-model comparison, Quaternary Science Reviews, 130, 222-230, doi: 10.1016/j.quascirev.2015.07.014, 2015., 10.1016/j.quascirev.2015.07.014+  * Blanchet, C. L., Contoux, C., Leduc, G.: Runoff and precipitation dynamics in the Blue and White Nile catchments during the mid-Holocene: a data-model comparison, Quaternary Science Reviews, 130, 222-230, doi: 10.1016/j.quascirev.2015.07.014, 2015., http://doi.org/10.1016/j.quascirev.2015.07.014
     * This paper describes the changes in contribution between the White Nile and the Blue Nile river catchments during the mid-Holocene. By comparing regional proxy-records with the output from a global atmospheric model zoomed on Africa, we propose that the reduced contribution from the Blue Nile at 6 ka originated from both a higher White Nile runoff and a lower Blue Nile runoff.     * This paper describes the changes in contribution between the White Nile and the Blue Nile river catchments during the mid-Holocene. By comparing regional proxy-records with the output from a global atmospheric model zoomed on Africa, we propose that the reduced contribution from the Blue Nile at 6 ka originated from both a higher White Nile runoff and a lower Blue Nile runoff.
  
Line 864: Line 1114:
     * The study compares different glacial maximum ice sheet reconstructions of Antarctica by using an isotope-enabled high-resolution atmosphere GCM. A best model data match is achieved for the PMIP3 reconstruction. Furthermore, the performed modern and glacial climate simulations support the validity of the isotopic paleothermometer approach based on the use of present-day observations.     * The study compares different glacial maximum ice sheet reconstructions of Antarctica by using an isotope-enabled high-resolution atmosphere GCM. A best model data match is achieved for the PMIP3 reconstruction. Furthermore, the performed modern and glacial climate simulations support the validity of the isotopic paleothermometer approach based on the use of present-day observations.
  
 +  * Bartlein, P.J., S.P. Harrison and K. Izumi, 2017, Underlying causes of Eurasian mid-continental aridity in simulations of mid-Holocene climate, Geophysical Research Letters. 44:1-9, http://dx.doi.org/10.1002/2017GL074476
 +    * Discusses a long-standing mismatch between climate-model simulations and paleo observations and relates these to present-day biases in atmospheric circulation and moisture flux
  
-===== Chapter 11 =====+  * Emile-Geay, J., Cobb, K.M., Carré, M., Braconnot, P., Leloup, J., Zhou, Y., Harrison, S.P., Corrège, T., Collins, M., Driscoll, R., Elliot, M., McGregor, H.V., Schneider, B., Tudhope, A., 2015. Linkages between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nature Geoscience 9: 168-173. doi:10.1038/ngeo2608, doi:10.1038/ngeo2608 
 +    * Shows that ENSO variance was reduced throughout most of the Holocene and that this quiescence is not obvioulsy related to orbital forcing. Climate models are unable to reproduce these observations. 
 + 
 +  * Perez-Sanz, A., Li, G., Gonzalez, P., Harrison, S.P., 2014. Evaluation of seasonal climates of northern Africa and the Mediterranean in the CMIP5 simulations.  Climate of the Past 10: 551-568. doi:10.5194/cp-10-551-2014, doi:10.5194/cp-10-551-2014 
 +    * Provides an evaluation of the ability of the CMIP5 simulations to simukate enhanced monsoons during the mid-Holocene. 
 + 
 +  * Luo, X. and Wang, B., 2018. How autumn Eurasian snow anomalies affect east asian winter monsoon: a numerical study. Climate Dynamics, pp.1-14., https://doi.org/10.1007/s00382-018-4138-y 
 +    * The possible mechanisms by which Eurasian autumn snow anomalies affect east asian winter monsoon (EAWM) are investigated by numerical experiments with a coupled general circulation model and its atmospheric general circulation model component. Mongolian Plateau and Vicinity (MPV, 40°-55°N, 80°-120°E) is the key region for autumn snow anomalies to affect EAWM, and snow anomalies over the MPV region can affect EAWM through a positive feedback process. 
 + 
 +  * Prado, L. F., Wainer, I., Chiessi, C. M. (2013). Mid-Holocene PMIP3/CMIP5 model results: Intercomparison for the South American Monsoon System. The Holocene, Vol 23, Issue 12, 1915-1920., 10.1177/0959683613505336 
 +    * This paper contains an unpdated proxy compilation for South American Monsoon System during the Mid-Holocene, and also a data-model comparison using the PMIP3 models. 
 + 
 +  * Oster, J. L., Ibarra, D. E., Winnick, M. J., & Maher, K. (2015). Steering of westerly storms over western North America at the Last Glacial Maximum. Nature Geoscience, 8(3), 201., 10.1038/ngeo2365 
 +    * Evaluation of model (PMIP3/PMIP2) performance using paleoclimate data, constraints on precipitation change caused be climate forcing and P-E changes observed using paleoclimate records. 
 + 
 +  * Ibarra, D. E., Oster, J. L., Winnick, M. J., Caves Rugenstein, J. K., Byrne, M. P., & Chamberlain, C. P. (2018). Warm and cold wet states in the western United States during the Pliocene-Pleistocene. Geology, 46(4), 355-358., 10.1130/G39962.1 
 +    * Water cycle and regional moisture energy balance budget change constrained by geologic/paleoclimate data and PMIP models in semi-arid region. 
 + 
 +  * R D'Agostino, J Bader, S Bordoni, D Ferreira, J Jungclaus (2019): Northern Hemisphere Monsoon Response to Mid-Holocene Orbital Forcing and Greenhouse Gas-Induced Global Warming, Geophysical Research Letters 46 (3), 1591-1601,  https://doi.org/10.1029/2018GL081589 
 +    * Mechanisms driving monsoon response to midHolocene orbital forcing and rcp8.5 greenhouse-induced global warming scenario are different. A decomposition of the moisture budget in thermodynamic and dynamic contributions suggests that under future global warming, the weaker response of the African, Indian, and North American monsoons results from a compensation between both components. The dynamic component, primarily constrained by changes in net energy input over land, determines instead most of the mid-Holocene land monsoonal rainfall response. This process-oriented study takes an important step toward improving our understanding of monsoon dynamics, quantifying the important role of atmospheric circulation changes in monsoonal precipitation changes by comparing and contrasting past and future climates. Our results highlight that mean surface warming and interhemispheric contrast in surface warming are poor indicators of the monsoonal precipitation response. Rather, the monsoon response is constrained by the integrated energy balance, which accounts for changes at the surface as well as at the top of the atmosphere. This explains why the mid-Holocene does not represent an analogue for future warming. 
 + 
 +  * Sánchez-Goñi, M.F., Bard, E., Landais, A., Rossignol, L., d'Errico, F. (2013). Air-sea temperature decoupling in Western Europe during the last interglacial/glacial transition. Nature Geoscience 6 , 837-841, DOI : 10.1038/ngeo1924 
 +    * In contrast with periods of relatively stable global ice volume (e.g. present-day interglacial), periods of ice-sheet growth are marked by a decoupling between eastern North Atlantic warming and European cooling. This configuration allows a northward shift of the westerlies bringing humidity to the high northern latitudes. 
 + 
 +  * Zorzi, C., Sánchez Goñi, M.F., Anupama, K., Prasad, S., Hanquiez, V., Johnson, J., Giosan, L. (2015) Indian monsoon variations during three contrasting climatic periods: the Holocene, HeinrichStadial 2 and the last interglacial-glacial transition. Quaternary Science Reviews 125, 50-60., doi.org/10.1016/j.quascirev.2015.06.009 
 +    * Insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic (e.g. amount of sea-ice or iceberg discharges), Eurasia or the Indian Ocean. 
 + 
 +  * Sánchez Goñi, M.F., Rodrigues, T., Hodell, D.A., Polanco-Martinez, J.M., Alonso-Garcia, M., Hernandez-Almeida, I., Desprat, S., Ferretti, P. (2016) Tropically-driven climate shifts in southwestern Europe during MIS 19, a low excentricity interglacial. Earth and Planetary Science Letters 448, 81-93., http://dx.doi.org/10.1016/j.epsl.2016.05.018 
 +    * MIS 19, the best orbital analogue to our present interglacial, is marked by low latitude-driven 5000-yr cycles of drying and cooling in the western Mediterranean region, along with warmth in the subtropical gyre related to the fourth harmonic of precession. The discrepancy between the dominant cyclicity observed during MIS1, 2500-yr, and that of MIS19, 5000-yr, challenges the similar duration of the Holocene and MIS19c interglacials under natural boundary conditions. 
 + 
 +  * Oliveira, D., Desprat, S., Yin, Q., Naughton, F., Trigo, R., Rodrigues, T., Abrantes, F., Sánchez Goñi, M.F. (2018). Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe. Climate Dynamics 51, 667-686, doi:10.1007/s00382-017-3948-7 
 +    * Data-model comparison reveals that the SW Iberian forest dynamics over the best orbital analogues to our present interglacial are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. 
 + 
 +  * Sánchez Goñi, M.F., Ferretti, P., Polanco-Martinez, J.M., Rodrigues, T., Alonso-Garcia, M., Rodriguez-Tovar, F.J.,  Dorador, J., Desprat, S. (2019). Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles. Earth and Planetary Science Letters 511, 117-129., https://doi.org/10.1016/j.epsl.2019.01.032. 
 +    * During MIS 17 (700 ka), a cold interglacial characterized by the lowest atmospheric CO2 concentrations of the last 800,000 years, the Iberian Peninsula was paradoxically marked by the maximum in the Mediterranean forest expansion indicating strong winter precipitation and summer warmth. These data indicate a decoupling between global and regional climates. This work also highlights the important contribution of the westerlies leading to the strong 100-kyr ice age cycles. These atmospheric changes remain, however, a key area of uncertainty in past and future climate model simulations. 
 + 
 +  * Sánchez Goñi, M.F., Desprat, S., Daniau, A.-L., Bassinot, F., Polanco-Martinez, J.M., Harrison, S.P. and ACER contributors (2017). The ACER pollen and charcoal database : a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 9, 679-695., https://doi.org/10.5194/essd-9-679-2017 
 +    * This global vegetation and fire data compilation shows the regional response to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. 
 + 
 +  * A.Kislov. On the interpretation of century-millennium-scale variations of the Black Sea level during the first quarter of the Holocene.  Quaternary International. Volume 465, Part A, 2018, Pages 99-104., https://doi.org/10.1016/j.quaint.2016.09.008 
 +    *  model-data, and data syntheses 
 + 
 +  * Kislov A. The interpretation of secular Caspian Sea level records during the Holocene  Quaternary International, 2016, vol. 409,  39-43 , https://doi.org/10.1016/j.quaint.2015.07.026 
 +    *  data syntheses : 
 + 
 +  * Yanko-Hombach, V., Kislov, A., Late Pleistocene and Holocene sea-level dynamics in the Caspian and Black Seas: Data synthesis and Paradoxical interpretations, Quaternary International (2017) , https://doi.org/10.1016/j.quaint.2017.11.030 
 +    * model-data, and data syntheses 
 + 
 +  * Kislov A. 2018 Secular Variability of the Caspian Sea Level.  Russian Meteorology and Hydrology, vol. 43, No 10, 679-685  , 10.3103/S1068373918100072 
 +    * data syntheses 
 + 
 + 
 +===== Chapter 11: Weather and Climate Extreme Events in a Changing Climate ===== 
 + 
 +Number of selected references: **13**
  
   * Stevenson, S, J. Overpeck, J. T. Fasullo, S. Coats, L. Parsons, B. Otto-Bliesner, T. R. Ault, G. Loope, J. Cole, 2018: Climate Variability, Volcanic Forcing, and Last Millennium Climate Extremes, Journal of Climate, 31, 4309-4327., n/a   * Stevenson, S, J. Overpeck, J. T. Fasullo, S. Coats, L. Parsons, B. Otto-Bliesner, T. R. Ault, G. Loope, J. Cole, 2018: Climate Variability, Volcanic Forcing, and Last Millennium Climate Extremes, Journal of Climate, 31, 4309-4327., n/a
Line 897: Line 1203:
     * We review the principal proxy data available for hydroclimatic reconstructionsover the Common Era (CE) and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE.     * We review the principal proxy data available for hydroclimatic reconstructionsover the Common Era (CE) and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE.
  
 +  * Luo, X. and Wang, B., 2017. How predictable is the winter extremely cold days over temperate East Asia?. Climate dynamics, 48(7-8), pp.2557-2568., https://doi.org/10.1007/s00382-016-3222-4
 +    * This work estimates the NECD predictability in temperate East Asia(TEA, 30°-50°N, 110°-140°E) where the current dynamical models exhibit limited prediction skill. We used physics-based empirical models (PEMs) to explore the sources and limits of the seasonal predictability in the winter extremely cold days over over TEA.
  
-===== Chapter 12 =====+  * Luo, X. and Wang, B., 2018. Predictability and prediction of the total number of winter extremely cold days over China. Climate Dynamics, 50(5-6), pp.1769-1784., https://doi.org/10.1007/s00382-017-3720-z 
 +    * The present study uses physics-based empirical models (PEMs) to explore the sources and limits of the seasonal predictability in the total number of extremely cold days (NECD) over China.The physical mechanisms by which the autumn Arctic sea ice, snow cover, and tropical- North Pacific SST anomalies affect winter NECD over the Northeast and Main China are discussed. 
 + 
 +  * Morrill, C., Meador, E., Livneh, B., Liefert, D.T., Shuman, B.N. 2019. Quantitative model-data comparison of mid-Holocene lake-level change in the central Rocky Mountains. Climate Dynamics. , 10.1007/s00382-019-04633-3 
 +    * We used several hydrologic forward models in a form of downscaling to quantitatively compare PMIP3 simulations with lake level records. We found that the severity of mid-Holocene drought in western/central North America about 6,000 years ago is consistent with local winter precipitation reductions of up to 50%, and that PMIP3 models fail to reproduce the severity of this drought. 
 + 
 + 
 +===== Chapter 12: Climate change information for regional impacts and risk assessment ===== 
 + 
 +Number of selected references: **15**
  
   * Mares, C., I. Mares, H. Huebener, M. Mihailescu, U. Cubasch, and P. Stanciu, 2014: A Hidden Markov Model Applied to the Daily Spring Precipitation over the Danube Basin. Advances in Meteorology, Volume 2014 (2014), Article ID 237247, 11 pp, dx.doi.org/10.1155/2014/237247   * Mares, C., I. Mares, H. Huebener, M. Mihailescu, U. Cubasch, and P. Stanciu, 2014: A Hidden Markov Model Applied to the Daily Spring Precipitation over the Danube Basin. Advances in Meteorology, Volume 2014 (2014), Article ID 237247, 11 pp, dx.doi.org/10.1155/2014/237247
Line 932: Line 1249:
   * PAGES Hydro2k Consortium (J. E. Smerdon, J. Luterbacher, S. J. Phipps, K. J. Anchukaitis, T. Ault, S. Coats, K. M. Cobb, B. I. Cook, C. Colose, T. Felis, A. Gallant, J. H. Jungclaus, B. Konecky, A. LeGrande, S. Lewis, A. S. Lopatka, W. Man, J. S. Mankin, J. T. Maxwell, B. L. Otto-Bliesner, J. W. Partin, D. Singh, N. J. Steiger, S. Stevenson, J. E. Tierney, D. Zanchettin, H. Zhang, A. R. Atwood, L. Andreu-Hayles, S. H. Baek, B. Buckley, E. R. Cook, R. D'Arrigo, S. G. Dee, M. L. Griffiths, C. Kulkarni, Y. Kushnir, F. Lehner, C. Leland, H. W. Linderholm, A. Okazaki, J. Palmer, E. Piovano, C. C. Raible, M. P. Rao, J. Scheff, G. A. Schmidt, R. Seager, M. Widmann, A. P. Williams and E. Xoplaki): Comparing proxy and model estimates of hydroclimate variability and change over the Common Era, Climate of the Past, 13, 1851-1900, doi:10.5194/cp-13-1851-2017, 2017., 10.5194/cp-13-1851-2017   * PAGES Hydro2k Consortium (J. E. Smerdon, J. Luterbacher, S. J. Phipps, K. J. Anchukaitis, T. Ault, S. Coats, K. M. Cobb, B. I. Cook, C. Colose, T. Felis, A. Gallant, J. H. Jungclaus, B. Konecky, A. LeGrande, S. Lewis, A. S. Lopatka, W. Man, J. S. Mankin, J. T. Maxwell, B. L. Otto-Bliesner, J. W. Partin, D. Singh, N. J. Steiger, S. Stevenson, J. E. Tierney, D. Zanchettin, H. Zhang, A. R. Atwood, L. Andreu-Hayles, S. H. Baek, B. Buckley, E. R. Cook, R. D'Arrigo, S. G. Dee, M. L. Griffiths, C. Kulkarni, Y. Kushnir, F. Lehner, C. Leland, H. W. Linderholm, A. Okazaki, J. Palmer, E. Piovano, C. C. Raible, M. P. Rao, J. Scheff, G. A. Schmidt, R. Seager, M. Widmann, A. P. Williams and E. Xoplaki): Comparing proxy and model estimates of hydroclimate variability and change over the Common Era, Climate of the Past, 13, 1851-1900, doi:10.5194/cp-13-1851-2017, 2017., 10.5194/cp-13-1851-2017
     * We review the principal proxy data available for hydroclimatic reconstructionsover the Common Era (CE) and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE.     * We review the principal proxy data available for hydroclimatic reconstructionsover the Common Era (CE) and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE.
 +
 +  * Martin Calvo, M., Prentice, I.C., Harrison, S.P., 2014. Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast. Biogeosciences, 11, 6017-6027. doi:10.5194/bg-11-6017-2014, doi:10.5194/bg-11-6017-2014a
 +    * Demonstrates that changing CO2 since the Last Glacial Maximum has affected  fire regimes through altering productivity and hence fuel loads. By analogy, both rising CO2 and climate must be considered as risk factors for wildfire.
 +
 +  * Morrill, C., Meador, E., Livneh, B., Liefert, D.T., Shuman, B.N. 2019. Quantitative model-data comparison of mid-Holocene lake-level change in the central Rocky Mountains. Climate Dynamics. , 10.1007/s00382-019-04633-3
 +    * We used several hydrologic forward models in a form of downscaling to quantitatively compare PMIP3 simulations with lake level records. We found that the severity of mid-Holocene drought in western/central North America about 6,000 years ago is consistent with local winter precipitation reductions of up to 50%, and that PMIP3 models fail to reproduce the severity of this drought.
 +
 +  * Oliveira, D., Desprat, S., Yin, Q., Naughton, F., Trigo, R., Rodrigues, T., Abrantes, F., Sánchez Goñi, M.F. (2018). Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe. Climate Dynamics 51, 667-686, doi:10.1007/s00382-017-3948-7
 +    * Data-model comparison reveals that the SW Iberian forest dynamics over the best orbital analogues to our present interglacial are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model.
 +
 +  * Sánchez Goñi, M.F., Desprat, S., Daniau, A.-L., Bassinot, F., Polanco-Martinez, J.M., Harrison, S.P. and ACER contributors (2017). The ACER pollen and charcoal database : a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 9, 679-695., https://doi.org/10.5194/essd-9-679-2017
 +    * This global vegetation and fire data compilation shows the regional response to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century.
  
  
  
  • pubs/chaptersar6.txt
  • Last modified: 2019/08/28 09:03
  • by jypeter